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that are in equilibrium, may be found. The stability under
perturbaticn of the following four types of configurations of
"geostrophic" vortices is studied:

colatitude 5;

colatitude 8, one vortex with strength Ko at the pole;

(¢c) The same distribution as in (a) but satisfying the boundarn
condition: vanishing normal velocity component at the
equaior;

(d) the same distribution as (b) but satisfying the boundary
condition: vanishing normal velocity compcnent at the
equator. ;

In this study we can distinguish two main parts:

(1) The solution of an algebraic eigenvalue problem that ari
from a linearized stdbwll,y analysis of the nonlinear
kinematic equations of vortex riotion;

{44) The numerical solution of the ronlinear eguations of

-~ 2w cpoAmo nacac ths wvalidity
ol CRAECE,; 4 N

wotlivn, which confirms, in
linearized analysis and yields the magnitude of the perctu
motions.

(b) N vortices of equal strength u egually spaced on a circle oI

(a) N vortices of equal strength u equally spaced on a circle of
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Abstract

The original motivation for this study comes from the
climatological observation of three semipermanent sub-
tropical highs in each of the Northern and Southern hemispheres
and its explanation in the work of H. J. Stewart, which was
extended by G. K. Morikawa, E. Swenson and A. S. Peters.

A geostrophic approximation has been formulated by A. S.
Peters, for the one layer, hydrostatic atmosphere, over a
rotating sphere. 1In this geostrophic model, the coriolis
parameter is treated as a constant; the height of the layer
and its tangential velocity components are expressed in terms
of a stream function.

Singular solutions composed of a finite number of vortices
that are in equilibrium, may be found. The stability under
perturbation of the following four types of configqurations
of "geostrophic" vortices isstudied: l
(a) N vortices of equal strength ¥ equally spaced on a circle

of colatitude 9;
(b) N vortices of equal strength u equally space on a circle
of colatitude 6, one vortex with strength ¥o at the pole;
(c) the same distribution as in (a) but satisfying the boundary
condition: vanishing normal velocity component at the
equator;
(d) the same distribution as (b) but satisfying the boundary

condition: vanishing nommal velocity component at the

eguator.




(1)

(ii)

In this study we can distinguish two main parts:

The solution of an algebraic eigenvalue probiem that
arises from a linearized stability analysis of the
nonlinear kinematic equations of vortex motion;

The numerical solution of the nonlinear equations

of vortex motion, which confirms, in some cases, the
validity of the linearized analysis and yields the

magnitude of the perturbed motions.

=VAl=




0. Introduction

The study of geostrophic vortices was begun by
H. J. Stewart [l] in an attempt to explain the occurrence
of the three so-called semi-permanent high pressure cells,
in each of the Northern and Southern hemispheres. In this
work, Stewart represented the earth by a rotating tangent
plane and the large scale closed isobaric systems of the
atmospheric layer by discrete rectilinear vortices, which
are defined by the Bessel function {o+ Later on, G. K.
Morikawa and E. V. Swe.son [2] studied in greater detail
the stability of these single layer rectilinear geostrophic
vortices defined on a rotating plane with constant Coriolis
parameter. The rectilinear vortices simulated the large
scale motions of the atmosphere over the earth by means of
projection from a rotating tangent plane.

A. S. Peters [3) found, upon neglecting the variation
of the Coriolis force with colatitude, that a geostrophic
vortex on a rotating sphere is given by a singular spherical
harmonic of degree v and order 0. A brief description of
this derivation [3] follows:

Let S be a sphere of radius a, that rotates with
constant angular velocity w about a polar axis. Let p be
the distance from any point in space to the center of the
sphere S and 6,¢ be the colatitude and longitude of a

point on the surface of S.




Let p=a and p = a + h(¢,6,t) represent the lower
and upper surfaces of an incompressible, inviscid fluid
layer that is gravitationally attracted by S and suppose
that h(¢,6,t) << a.

At time t = 0, the constant rotary motion of the
fluid is disturbed by the creation of concentrated vortices
with axes that are normal to the surface of S.

The velocity components of a fluid particle, relative
to S, are defined by

p sin 9 %% (longitudinal component to the East)

-p %% (latitudinal component to the North)

%% (radial component).

The basic Eulerian hydrodynamical equations defining

the motion consist of a continuity equation and three

momentum eJjuations.

The shallow water, or long wave, model is derived from
the Eulerian equations by assuming that:
(a) The only body force acting is that due to the
gravitational potential G of § and furthermore
G = gr; g = gravitational constant;
The radial momentum equation can be replaced by the
hydrostatic law, for the pressure p, 1in terms of

the density o0 per unit surface area, that is

p(¢'9:0,t) =0'g'(h+a'p) ’

which implies




0 at the free surface, p = h+a;

P

(c) the motion is such that the nonlinear terms in the
momentum equations can be neglected;
(d) the radial velocity is negligible and the radial

variation of u and v can be ignored.

Under these considerations, an approximation to the
motion of the atmospheric layer on the surface of S is
determined by a continuity equation and two momentum

equations [3]:

(0.1) n

1 [a(v sin 6) ad]

t ~ asin 6 30 Y'Y

88 _ s - -3 _ W
(0.2) t 2wv cos § = asin 6 3¢ °
AY B :) o}
(0.3) 3 + 2wu cos 6 = 358 *
where
h‘¢‘lort) ‘ho
0§ s h0 z h(¢,4,0) = constant .
0

A. S. Peters [3] has shown that by neglecting the
variation of the coriolis parameter, f = 2w cos 0 with

colatitude, equations (0.1), (0.2), (0.3) lead to

2 2 2
1 ) . an 1 o n a 2 a N
(0.4) : — sin 6 — + — (4uwin + )
sin 6 36 ) sin20 3¢2 gho 1 at2
549 :
= 2a g“—h; €(¢rero) ’
where wy Z Wwecos 61 = £f/2 = w~cp = constant and

i B e Hmu“—*M
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1

3(u sin 0) v ]

£(6,0,0) = a sin 6 [ 36 + 3

is the radial

component of vorticity at t = 0.

For a vortex of constant strength u concentrated at

(¢j,0j) when t = 0, we take

2a2wl £(4,0,0) 2a2wl 6 (¢=¢4) 6(0-6,)
ghy =g ¥

azsin 6.
J

and & 1is the Dirac delta function.
A steady state solution of (0.4) corresponding to a

concentrated vortex is such that

2w1 v(¢,0)
nd) . —a——
n(¢,0) gho
where y(¢,8) must satisfy
2 2
2 4da”"w, ¥
sin‘g 9¢ 919
§(¢=-¢.) 8(6-6.
" (¢ ¢1) ( BJ)
sin ej

y does not depend on time and in fact is the stream function;

so that the associated steady velocity components are

= A
uxade
g |

a sin 8 9¢
Equation (0.5) describes the geostrophic motion of the

atmospheric layer over a sphere.

It can be verified by direct substitution that (0.5)

is satisfied by




- S =

where v is complex,

' d1 Z geodesic distance from the center
of the vortex to any point (¢,6) on
the su: tace of S.

spherical harmonic of order v [3].

Pv(x)

A superpcsition of vortices, with centers at
(@k(t),ek(t)) satisfies the system of ordinary differential
equations (1.3) and (1.4).

The stability of four configurations of these geostrophic
vortices on the sphere is studied in this work:

(a) N vortices of equal strength i equally spaced on a
~ circle of colatitude 6;
(b) N vortices of equal strengh v equally spaced on a circle

of colatitude 6, one vortex with strength Mo at the pole:;

(c) the same distribution as in (a) but satisfying the
boundary condition: vanishing normal velocity component
at the equator;

(d) the same distribution as (b) but satisfying the boundary

condition: vanishing normal velocity at the equator.




For the problems under consideration there are four
parameters:
(I Initial colatitude of the belt of vartices (6),
a. Number of vortices on belt (N)
i e
3. Coriolis parameter cp At

4. Strengths u and Mo

The linearized stability of an equilibrium configuration
is studied for N > 2, 5° < 8 < 90°, .2 < p < 1.0 and
- < uo/u < =, 2Zones of linear stability in the (cp,e) plane
and the (uo/u, 8) plane are given in the Appendix.

Numerical integration of the nonlinear equations of
vortex motion (1.3) and (1.4) is used to test the validity
of the linear analysis, i.e., to see when nonlinear effects
are important, and to determine the linear and nonlinear
motions. Results on the nonlinear initial value problem
are given in Section 3 and in the Appendix.

These computations show that nonlinear effects are
important near the boundary of the linear stability zone

and that the nonlinear effects are more pronounced when a

polar vortex is considered.




1. Equations of Motion for Four Configurations of Vortices

In generai, the position of each vortex on the surface
of S 1is described by its colatitude ei and longitude ¢i.

The stream function Vv($,6) is related to the velocity
components u,v (longitudinal, latitudinal) by

1l 3 1 oy : ’ .
(1.1) (u,v) (g f)_g " & BT W) = (a sin 08¢, =-a8)

The stream function generated by the superposition of N+1
vortices must satisfy

2 2
4a wlw
gh

0

6(¢-¢i) 6(6—61)
sin ei

As we can see from (0.6), the above equation is satisfied by

- 1 o)
(1.2) vi(4,0) = A H; Py(-cos ai) '

i=0
with cos ai = cos O cos ei + sin 6 sin ei cos (¢-¢i) ;
where (¢,6) 1is an arbitrary point on the sufrace of §

and (¢i,6.) are the coordinates of the center of the ith

i
vortex, 0 < i < N; the constant H; 1s called the strength

of the ith vortex.
It can be shown [3] that the nonlinear kinematic equations
of motion of the center of the kth vortex can be written, by

using (1.1) and (1.2), as if the vortex particle (¢k,6k) moves

=G




under the influence of the remaining vortices:

N
. E 1 y
(1.3) a sin 9k¢k B i£0 ui P\)(‘COS aik)
i¥k

°(sin Ok cos Qi-sin Oi cos ek cos(¢k-¢i)),

N
3 > | 1 ? ) : . & % =
(1.4) =a®, = p=fr—or i£0 u; P (-cos a;,) sin 6, -sin (¢ =0,
1#k

with
(1.5) cos a;g = cos ek cos ei + sin 6 sin Oi cos (¢k-¢i)

for k = 0, 1,055 5N and

' d
Pv(x) = = P\)(x) g

1.1. Cases (a,b). N Vortices on a Circle of Colatitude,

with and without a Polar Vortex.

Consider the configuration that consists initially of
one polar vortex of strength Mo and N vortices of equal
strength u, equally spaced on a circle of colatitude Y,

that is let

2
ek = Y r ¢k (k-l) —; r uk o ul (k = 1'-00,N)

(1.6)

e
o
I
o
-
A
o
n

arbitrary, ko arbitrary.

Inserting (1.6) into (1.3), (1.4), (1.5) we find
that the latitudinal component of the velocity vy at

the pole is




N
1 5 Y e . : o .
v0 T R u iél Pv( cos Y) sin Yy sin (¢0 ¢i) = 0 ,
since
i
sin (¢4=¢,) = 0 .
k=1 S
N
The longitudinal component wug, also vanishes since | cos b= 0.
i=0
For the circle vortices, we find that
N
v, = 1 ’ P ) sin y sinw, . =0
k = T@ sin o7 " L. v Pk y ki

by symmetry, and

_ ' . b 1 ' :
u = asiny % = Tials ur {uon( cos Y) sin vy
g
+ u ) Pv(oki) sin y cos y (l-cos wki)}
i=1
i#k
where

2 o,
= -cos”y - sin’y COS W, 4

Pri i

. 27
wey = (k1) =g
Thus, the vortices remain on the circle of colatitude

Yy but they move around the circle with constant angular

velocity
. l ]
(1L.7) ¢k = = 3 {“0 Pv(-cos Y)
4a“sin vm

N
+ U i£1 P;(pki) cos Y {(l-cos wki)}
i#k




1.2, Cases (c,d). N Vortices on a Circle of Colatitude,

with and without a Polar Vortex; Satisfying a Boundary

Condition at the Equator.

By means of reflection across the equator we can look for
solutions that satisfy some prescribed boundary condition at
g = 90°,

The boundary condition treated hore is

|
3¢

H=m/2

i.e. wvanishing latitudinal velocity component at
the equator, 6 = n/2. The stream function for the case
of a polar vortex along with N other vortices in the northern

hemisphere satisfying the boundary condition is given by

N

T - 1 - » .
(1.8) w(¢,0) = ¢ T igo “i(pv( cos Y,)-P (cos yi)]
cos Y; = cos 0 cos Qi + sin 6 sin Oi cos (¢-®i)

1
cos :
Y1

cos 0 cos Oi - sin 0 sin Gi cos (¢-oi) 2

This sum can be interpreted as representing a superposition

of N+1 symmetrically placed vortices in the southern hemi-

sphere with strengths that are the negatives of those of

the corresponding vortices in the northern hemisphere.
Equations (1.1) and (1.8) yield the nonlinear equations

of motion of the center of the kth vortex,

-10-




(1.9) a sin ek¢k

— { ? Myl (Py(=cos a, )+P (cos a),))sin 6, cos o
4a sin vn lj=p 1 v ik’ v ik k i
i¥k

- (P;(-cos aik)-P;(cos aik))cos 6, sin 6, cos (¢k-¢i)J

+ 2uk P;(cos 26k) sin ek cos Gk}

N
T 1

(1.10) -ab, = qe—pr igo

i#k

{Pv(-cos aik)-Pv(cos aik)}

*sin Gi sin (¢k-¢i)

) . .
(1.11) cos a;x = cos Gk cos ei - sin Gk sin Gi cos (¢k-¢i)

For the case that the N nonpolar vortices have equal strengths
M and initially are on the line of colatitude v,

(1.6) again
yYields Vi =0, 1 <k <N, but now

. l ] ] !
(1.12) ¢, =0 = —2.-*[{110(Pv(-cos Y)+P, (cos v)) } 1
4a“sin wvnm 1
1
N, W W
+ U cos Y {.g P, (0 ;) (1-cos W)t g P, (py ;) (l+cos wki)} },
i=1 k=1
i#k
= - s2 - ain* o
Prj = —cos”y sin'y cos w . ,
. g 1
Prij = cos’y Sin'y cos w, . , 1
2, An . 2R I
Mg = (h=d) S5 . |

That is, the vortices remain on the circle of colatitude

Y and they traverse it with the constant angular velocity

given by (1.12).
sfl=




154:8 Invariants

The kinematic equations of motion can be written in
@ more systematic way, by using the Kirchhoff function W
for geostronhic vortices on a sphere.

For a configuration of (N+1) vortices and no boundary

condition at 6 = 7/2, the Kirchhoff function is defined by

N
- 1 = A

(1.13) W = T Z_ ey P (-cos 6, cos ej

1,3=0

b

-sin ei sin Oj cos (¢i-¢jﬂ
Then, with u, = a sin ekék and ¥y * -aOk » it follows that
_ (oW 1w :
Mg (e vy ) = (aek 'R e v AR PO,

Since W depends only on the relative distances between
the vortices and is not an explicit function of time, it
is easy to verify ihat

(1) g% = 0 and therefore W is itself an invariant, i.e.

W = constant;

(ii) and from

. 1 3w .
TR P 5, a6, ' Sin O #0
we have
N N
. . W [
a z My 8, $in 6, = = Z e 1) '
k=0 Kk k k=0 %% |

as an easy consequence of the way that the angles ¢k

appear in W in (1.13). Therefore by integrating, we get

another invariant defined by

-12=

e e S s




(1.14) f£,(8,,6

8

y, cos 6, = constant.
K k

e k) k

e~

0
Clearly fl is an invariant of the motion.
(iii) Multiplying both sides of

W . l-cos ek
W;=asin6k¢k by ——Si—n-—é-k—, sinek#o,and

summing over k we define

N l-cos 6

. . Lo aw k
(1.15)  £,(68;,...,6;, Opreverty) = k£0 36, ST 0,
? 6
= pu, (1 - cos 8,) o, .
k=0 k k k

For the case with boundary condition we can derive
analogous expressions fcr the functions W, f1 and fz.

We shall see that although the function
fz(el,...,ek, $1""'$k) given by (1.15) is not an
invariant, its linearization with respect to the equili-
brium solution (2.1), (2.2), is an invariant for the
linearized motion.

The equations of motion state that the velocity of
the center of any vortex, say the kth, is the sum of the
field velocities of the remaining ones evaluated at the
position of the kth vortex.

If the strength of a vortex is positive the velocity
field of the vortex has counterclockwise or cyclonic
rotation.

In this system, each vortex center moves like a massless

particle in the velocity field of the others.

=13




2. Linear Stability Analysis of the Nonlinear Equations of

Motion

The linearized equations are obtained by making a
perturbation expansion of (¢k,0k) about the equilibrium
solution satisfying fthe initial condition (1.6).

That is, for the kth vortex
Ok =y + LSk '

(2.1)

= (k-1) 2% .
b = (k=1) 5+ Qt + ea, ;

while for the polar vortex

g = €8g
(2.2)

@o = cao B RE 5

where ¢ is small and o and Bk are functions of the time t.

2.1. Cases (a,b). N+1 Vortices, No Boundary Condition

at Equator.

The formulas (2.1), (2.2) are inserted into (1.3), (1.4),
(1.5). By expanding in powers of ¢ and retaining first
order terms, we get the following linearized equations

of motion:

~-14~




I
i 2 . ' .
i (2.3) =-4a sin van = g Pv(-cos y){& sin w,,=n cos wkl}

T b T .8

+ 1 A8+ 1 By lagmag) Laxk <N,
i=1 i=1
ik ik

2.5 . . i
(2.4) 4a“sin vm sin Y%:-uo{Pv( cos Y)cos Y

t ‘

g, A2 :
l + % (+cos y) sin y}{& cos w +n sin wkl}

N N
a a a
+ AL Byt izl A iB; - i£1 Pri% + Ll k<N,
ik ik
y
4azsin vy, y
(2.5) M B (n+ Qf) = (Pv(-cos Y) N cos vy

" 2 N 2
+ P (-cos y) sin®y ] cos wil)} 3

i=]
' N N
+ P (-cos Y) [31n Y _Z ¢; sin w; - cos y .g B,cOS W,
i=1 i=1
" 2 N
- P, (-cos y) sin® ¥ 'Z B, COS W, 4
i=1
4azs' v . Y
(2.6) 12 (E-Qn) = -(Pv(-cos Y) N cos y
L1} . 2 N . 2
+ P (-cos y) sin®y _Z sin®wy, ) *n
i=1
1 N N
+ P, (-cos Y) (sin y izl a; COS w,; + cOS Y izl B, sin w,,)

+ Pv(-cos Y) sinzy

e~

—

. COS W, ;
81 S0 1R

.-‘.
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(2.

and

+ u Pv(pki) sin y cos Y sin wki(l-cos w

o & - 2 1
+ u [v(pki) sin"y cos Yy (l-cos wki) sin w .

B’ = i :
O s . 9 pv(pki) cos Yy sin w .

3

ki

6 ]

B _ e @ 2.
Aki = qu(pki) (sin“y 4+ cos Yy cos wki)

] o 2 2 2
T Pv(oki) sin“y €os ¥ (l-cos wki) ’

)6~

’

sin vm cos YO +

By = 0By
A2 = (cos ¥ P.(-cos Y)+ sinzy P“(-cos Y))
kk ~f v Vv
—4a2
%’ ' 2 2
#+u ) P Ap,.) (cos vy +# sin" Y cos w, .)
fag Y ki ki
i#k
+ ? P"( ) sinz‘ * (l1-cos w )2
o by Ty ki [~ o = % LA
i¥k
a ! Y "
8) Bki = pv(pki) cos v sin y sin w, .

’

: J .
) sin Y cos Wit “pv(pki) sin”y sin’w, .

.
Y




I TSRS, Ty

2.2. cases (c,d). N+1 Vortices, Satisfving Boundary Condi-

tion at the Equator.

By inserting (2.1) ard (2.2) into equations (1.9),
(1.10), (1.11) and linearizing analogously, it follows that

{(2.9) -4a2 sin vn Bk = “O{Pv(-cos Y)-Pv(cos Y)}

N
. ; — 8
{E sin wy,-n cos wkl}+i£lAkiBi

i#k

¥iog
i=1
i¥k

2 3 . . ) [] L » ]
(2.10) 4asin vn sin Yo = uo{Pv( cos Y) Pv(cos Y)}
*cos Y{E cos wkl+n sin wkl}

" " A 2 d
- uO{PV(-cos Y)+Pv(c°s Y)}31n Y {Ccos wkl+n sin wkl}

g . . :
(2.11) ‘“’*St’ul (n+0€) = {(Pv(-cos Y)

+ P (cos Y))N cos y + (Pv(-cos Y)-P:(cos Y))

N u
. 8 2 R =t
* siny | cos®w,, +2 —p (1)}5 -
i=1 il U Y

-17-




- {(P;(-cos y)—P;(cos Y)) cos y

" -~ N
" . Z )
+ -
(Pv( cos y) + Pv(cos Y)) sin Y}iz bi cos w,

N
L
+ (Pv(-cos Y) = Pv(cos v))sin v § a, sin Wy o

2 i .
(z 12) 3a”sin vn (£-Qn)

T = -{(Pv(-cos y)+ P;(Cos Y))N cos vy

" " 2 N 2 21,
. h iN i ; 9 .
+ [PJ( cos v} - P {cos y)) sin“y izl sin®w  + — Pv(l)} n

+{fP;(—cos y)—P;(cos Y))cos Y+ [Pv(-cos y)+P"(cos Y)sinzy)}

1) 1)
Bi sin “ﬁl+ [Pv(-cos y)-Pv(cos Y)] sin vy

0. COS W,
: i i
1 1

ll

He—27

Hes 2

i L

where

8 " ’ L [ *
(2.13) A = u(Pv(pki) pv(oki) cos y sin w, .

* ) .
% p(Pv(Qki) + Pv(pki)) siny cos y sin w, .

" " * {2 .
- “(Pv(oki)-pv(pki)) sin®y cos y sin w; cos w.. ,

g e W
By; = “(Pv(oki) Pv(oki) sin y cos w,,

" " * , 3 . 2
+ “(pv(pki) - Pv(pki)) sin”y sin” wy . .

-18-




a

| By

L} L}
k - Hg cos v {Pv(-cos Y) + Pv(cos Y)}

" "

+ uosinzy {Pv(-cos Y) - Pv(cos y)}- 4azsin VT cos yf

N

]
+ u 'Zl Pv(pki) (c052Y + sinzy cos wki)
l=

i#k

a2 2
Pv(pki) SIn Y cos Y (l-cos w

+
=
-’-l-
Ne~—2Z
'—.

3

+

3
I~
[

" 2 12
Pv(pki) (cos™y ~ sin“y cos w, .)

. -

P (p¥.) sin? & (e w0
v (Prs ny cos‘y cos .

~
~—Z },

- -
Mo
x

+ 2u(coszy-sinzy) P\')(cos2 -sinzy)- 8u sinzY coszY

Pv(coszy - sinzY) ,

o < . . ' ' *
By; = u cos y sin y sin wki{Pv(pki) pv(pki)}

adB :
+ U Pv(okL) Sin Y cos Yy (l-cos wki) sin wki

" *
+ u Pv(pki) sin3y cos y (l+cos wki) sin wki 7

R s ' 2 2
Ay = - Pv(pki)(Sln Y+ cos®y cos W .)

2

2 2
+ Pv(oki) sSin Y cos vy (l-cos wki) -




)

- P'( - ) (sin2 - os2 cos w
H Vv pki v @ AR ki

L -5, 2 2
- u Pv(pki) siny cos Yy (l+cos wki) "
and
= - co A = ‘g S W
Pri sy sin"y co ki
* SZ e 5 @
Pri = cos”y sin' y co ki !
£ = Bo cos ao .
n = 80 sin ag -+

As we can see, the linearized equations of motion have
constant coefficients and the usual exponential stability
analysis is possible for all cases. That is, the

quantities a, , Bk T (A can be sought as a sum

k
Azt

of exponential functions of the form e r L= 1,...,2(N+1).




2.3. Linear Stability Analysis of the Four Cases.

Case a. N Vortices on a Circle of Colatitude,

No Boundary Condition at the Equator.

If we set Uy = 0 in equations (2.3), (2.4), (2.7)
and eliminate equations (2.5), (2.6), which involve the
coordinates of the polar vortex, we have the linearized
equations for the present case.

These equations can be written in the form

NIERINERH

where
%y, By
a = . ; B = :
o 8
and N ¥
- n® RN |
( Byi Pri .
A = (aki) = l 2 L2 ST —— ' akk =0 ’
4a"sin vm sin y 4a”sin vm
o
Api
4a“sin v sin y
Bﬁi ‘§
e = ) (= ( ] L = = c
Rl 4a’sin v kk gai N
i#k

where the matrices A, B, ¢ are of order N.

Furthermore A, B, C are circular matrices, so that

it can be shown that [8] the eigenvalues of L are given by

1/2
2.15 A, = a. + (b.c. ,
( o j s, & {BySge

+31=




and aj,bj,cj are the eigenvalues of A,B,C.

From (2.14) we have the following properties of aik'bik’cik'

aj, = 0 for all values of N

If N 1is even

R R R

B2 = T Ay reccr®y w2 T T PLm/2 42

by, = by reeePy N2 = Prong2 42

€125 Sy rcccrC1,nz2 T C1,N/2 42

If N 1is odd

a1 = T A1y v Ay Ng2141 T T, IN/2142
bypg = by reeer by w2141 T P1,ny2142
12 = Ciy 't Cp,nyz2140 T C1,[(Nz2142

Therefore, we get for aj,bj,cj the following expressions.

-22-
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%Y

P
(2.16) by =byy + 2 £ by cos (w 1-3) + a(N) cos mj b

k=2 1,{N/2]+1
P
cj = 2 k£2 C1k (€0s w1+ = 1) + a(N) (cos "itbe) ins2741
where Weq = (k-1) Z%
s for N even
P = 2
E§l for N odd
1 for N even
a(N) =

0 otherwise

Using (2.13), (2.14) and (2.16) we get

P
3 . Je - .
(2.17) 4a“sin vn a; = 2iy cos ¥y k£2 P, (0, ,) sin Wy
2 p "
sin (w.;°J) = 2iu cos y sin‘y k£2 P, (p, 1) sin wy (1-cos wyq)
*sin (wkl'J)
(2.18)  4a® sin vn b, = - 422 sin vy S95 Y Q
j sin y
4 y coszx .
+ 2u k£2 pv(pkl) {sin - (l-cos wkl'cos(wkl- J))

+ sin y(cos W 1~COS (wkl'j))}

P

: 2 " 2 ;
+ 2u sin y cos“y k£2 pv(pkl)(l cos w, )" (l+cos (wkl j)

) COSZI

]
+ alN) u{pv(pn/Z i1l (sin Y =R )

-23-




(1] . 2 ,
+ 4 P\)(pn/2 ‘1, 1) sin vy cos Y} (1 + cos 7j)

B

2. .. - ; ' !
(2.19) 4a“sin vic, = 2usin y k£2 P (o, ) (cos(w .+j)-1) cos Wy
+ 2y sin> E P (o, ) sinu . (coale,; 51 = 3)
4 P e SR Lacas '

- a(N) wu PQ(D 1) simn v (cos 73 - 1) .

n/2 *1,

p
P | " F— : —
(2.20) @ = —; (kZ P,(py 1) cos Y (1-cos u

)
4a“sin vrm =2 k1

+ a(N) cos Y P\)(on/2 1, 1)]

A study of the sign of C1x shows that 1k < 0 for
all values of y, N, k, cp whenever u > 0 , which implies

cj >0 for all 3, v+ W, Cp
Therefore, we have from (2.15a,b) that if bj <0
for all j, L has only purely imaginary eigenvalues, and
if bj > 0 for some j, then L has complex eigenvalues
(except when cj = 0), the second alternative would mean
exponential instability for the linearizeé equations if

the real part of at least one eigenvalue is positive.

u can be factored from aj, bj’ cj; let

then

-24-




therefore . affects only the magnitude of Aj and does
not affect in any way the stability properties of a given
configuration of vortices.

If 1 <) we have to reverse the inequalities of the
last paragraph.

We can state now the linear stability analysis reduces
to finding those values of N, 4, cp that will yield a
negative value of bj when u > 0 or a positive value
of bj when 1 < 0 for all values of j. Such values of
N, 8§, ¢ will define the linearly stable range. From

1%
(2.15a), we see that each value of j gives two eigenvalues

of L.

If j = N, we have ay = ¢y = 0, which means that 0 is

an eigenvalue of L with multiplicity 2. Summing eq. (2.3)

and (2.4) with “0 = 0 , we have
} i T )
8. = ] 7 a B, # &, oy =0, )
k=l * k=1 i=1 ¥ 2y 4= ik Tk i
i#k i#k
N(rx_l
= Y11 a, ]s =0
pui Ygmq B
k#i

Integrating we get

kel
Also
L 5 ¥
O = A (@ =8, ) % b., 8
K=l T =) g=g R K 87 U L 05 4ep XK
f E e 1 (3 a1
= ) B, a8 = ) b, ]e = [ b, ]
pel g=i CUE ol kg MTE ghy CEL) o
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By an appropriate choice of displacements

we can obtain

(2.21) [ B =0
k=1
and then
N
(2,22) ) % = ¢ =constant .
k=1

These invariants can also be obtained by linearizing f

and f2 respectively defined in (1.14), (1.15).

If we make j = 1 in (2.17), (2.18), (2.19) we have

P
(2.23) 4a?sin v a, = -2ip cos y ]

1 k=2

; a2
- 21y cos Yy sin'y
k

I~

N .
: Pv(pkl) sin wkl(l-cos

o8 Y

ob

2 .. L
(2.24) 4a” sin vm bl = =4a " sin vm S

+2u ] Pllpg,)

” . 2
+ 20 iR coszy Pv(pkl) sin wkl(l-cos w

P

3 e _ : ' &
(2.25) 4a” sin v c, = 2u sin y ) Pv(pkl) (cos Wy 1) cos w

k=2

3 p "
+ 2y sin”y J P, (p
k=2

kl) sinzwkl(cos wkl-l)

+ a(N) 2u P\)(pn/2 iy l) sin y.

2"

L 2
pv(pkl) sin w

W

k1

k1

kl




Using (2.23) and (2.24) in (2.25) we get

& ¢ - BLE sin y -
4a” sin vr cl = 4a sin vT e (9 1al)
|
: Using (2.23) in (2.24),
4a2 sin vn b, = -4azsin v gos Y (R-1ia,)
1 sin Yy 1
Hence
- i and
Xy = @y ¢ (Q= ia )i =
AR 1 2a,-i2
For j = N-1, one of the eigenvalues is Ay _; = i, i.8.

the period @ 1is an eigenvalue of L.

For Y = n/2, we have for a fixed cp and N,

aj =0 forall j=1,...,N
P '
by = 2u kgz P, (P ) (cos wy ,=cOs wy g -3)=
] o
- u a(N) P\)(pn/2 1, L (1 + cos 7m3j)
P
e U N -
¢y = 2u kZZ P! (py ;) (cos wyq+j -1) cos w,
- a(N) u P'(p ) ((-1)j = 1)
v /8 ¥, 1

It follows that

b1 = 0 which means Q@ = 0

-27-




From the above considerations, we can conclude that

s

when Yy = n/2, we have only zero eigenvalues for
configurations with 2 and 3 vortices.

As we go closer to the pole (I increases and

w if w >0
lim Q =

60 == §f @ <@
when vy - 0, then Pri =] for @all a4,k = L;%5e,Na

As the argument tends to -1,

sin vn 2 . sin vm 2
and P (x) v -
ki x+1 V m (x+l)2

P;(x) ~

Using these approximations of P'(x) and P (x) in
the expressions for aj, bj’ cj (2.17-19) the factor
sin vr cancels and we can conclude that for small colatitudes
the eigenvalues do not depend on the coriolis parameter.

The numerical results listed in the Appendix suggest

the following conjecture.

Given a configuration of N vortices, there is a colatitude
Y, that depends on N, such that for 6 < y the configuration ;
is linearly stable and for 6 > y is exponentially unstable.

This particular value of Yy decreases for increasing N.




Case b. N Vortices on a Circle of Colatitude, 1 Polar Vortex,

No Boundary Condition at the Equator.

Equations (2.3), (2.4), (2.5), (2.6) give us the
linearized equations for the case of N vortices on a circle

of colatitude 6 and a polar vortex with no boundary

condition at 6 = m/2.

These equations can be written as

One
m
(]
w)
(-
On
On

(o33
1]
>

w
O

>

™
™

where
3y Bl
g L ] L ]
Gz(n]; o = : S B: :
Oln Bn

The addition of a polar vortex destroys the
circulant property discussed before and the eigenvalue
calculation has to be carried out by an iterative
procedure.

We have to consider a new parameter, namely, the polar
strength Mo The quotient uo/u plays an important role
in the linear stability analysis.

Some of the general properties which are valid for all

values of the parameters are the following:

+29=




(a) the angular velocity &, as given by (1.7) is an

eigenvalue of Lp

(b) L _ has a double zero ei1genvalue.

(e} lim 0 = 21 - W P (0) # 0
Yam/2 4a” sin vnm

In the derivation of the linearized equations (2.3)-(2.6)

mixed spherical and polar coordinates were« used to describe

the motion of the polar vortex and the vortices on

the circle of colatitude. This was necessary in order

to give coordinates to the polar vortex so that the equation

of motion is 1ionsingular at © = 0,

If we sum equations (2.3) and (2.4) over k of

linearize (2.14),(2.15), we get

2, = constant and

N

y a, = constant.
k

" k=

W~

k

That is, we have two linear invariants of the motion

but they are independent of the position of the poler vortex.

From equation (1.7) we have that if

N
g cos Y _Z Pv(pli) (l~cos wli)
0 53 i1=2 L C*
S P : =
H Pv(-cos Y)
then f# = 0. Since O is an eigenvalue of Lp, for uo/u =c*

we have a quadruple 0 eigenvalue for all values of N, cp, B

*
1f w2 OR po/u > C >0 and the rotation is in the

*

positive ¢ direction (West to East) . e o > 0l uo/u N E

Q < 0.




Some results on the algebraic eigenvalue problem

for N =

of N, corresponding results are given in the Appendix.

The calculations 10

3 is presented in this section.

values of

Wg/u 20

N = 3.

al(c 2 2.0
max |a( p)l

02’

were

uo/u < 0.

e oy

done using

1.0;

5°,6°

u:

They can be summarized as follows.

For a(cp) < Wp/u < 0,

10

e e 90° and

For other values

mz/sec.:

we have stability in the entire Northern

c
heRisphnre. For Iuo/u| > a(cp), the stability region is

reduced to a cap that decreases with increasing Iuo/ul.
In the table below we have the limit 6_ of the cap for
w

different values of uo/u.

Configuration is stable for 0 < 6 < 6.

-2.0

Table.

-2.5

Of 6 for N
c

-3.0

3

-400
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For uo/u = C* we have linear stabilityfor all 6, c
uo/u > 0. For 0 < uo/u < b(cp), mgx b(cp) =~ (0.75, we
have linear stability for 0 < 6 < n/2.p

£ uo/p increases, a belt of instability appears, and
the width of this belt increases with increasing uo/u.

In the table given below, we have the limits of the
instability belt, 6. and 8, , unstable for 8, < 6 < ©

1 2 l = - 2!

stable otherwise, for some values of cp and “0/“'

*
Table

Configuration is unstable for 0, < 6 < 6

- 2 '

1

T L L[ 18 [ .0 [ X 1 38 | 7.0 | 5.0
i § ! 5] ) 5 2] (2] + 2] f
Cp \I71 "2 "1 20 1] 2 1 1921%1)%2191]%1%11%2] %112

o 0| ol11;28}9 |37 9(47| 8|52} 8|56] 7|60} 7 63

23 0/ 0/10(29|9 |39] 949 | 8(54| 8{58} 7/62| 7|65
.4 o 0{10/32|9 (41| 8|51| 8|57| 8|60 7|64] 7{67
« 5 ol o{10|34]|9 |44| 8|54| 8|60} 8[63] 7|67| 7169
.6 0| 0]10|37|9 146 8|57] 8{62| 8|66 7|70 7)72
o 4 14]17)10(39}9 |49, 8|59 | 8|65| 8|68| 7{172| 7|74
.8 i&l22]10f4218 (51] 8|82, 8 67| B|7L] 2[7B| F|77
o9 iZ2j25]110)43|9 |53] Bi{6%] B69| Ti73, T 7V} V|79

1.0 12]28i10|44(9 |55} 8|65} 8 71| 7|75 7{79] 7|8l

*Entries in table are in degrees.

Using these tables, we can construct the curves
of linear stability in the plane (G,UO/U) for a fixed cp.

See Figure A-70 in the Appendix.

=5 =




Case c. N Vortices on a Circle of Colatitude,

Boundary Condition at the Equator.

Setting Ho = 0 in equations (2.9), (2.10), (2.13) and
eliminating equations (2.11), (2.12) we have the linearized
equations for the confiquration to be considered now.

The equations can be written in the form

=T ) )

and using (2.9), (2.10) with Hog = 0 we have that

-Bﬁl - Aii
AZ it (akl) ) (4azsin VT sin Y] ) (4a sin vn]’ akk-o
A
ikl BZ ) (bki) i [4azsin vm sin y]
B8, N
“2 " (cki) 1 [4azsin vm ] © %k T T izl ki
i#k

AZ’BZ’CZ are circulant matrices and therefore
equations (2.15) also hold here.

Using (2.16), we can get equations similar to (2.17)-
(2.20) . As before, we can observe that €, >0 when u > 0
and conclude that if bj > 0 for some j, we have exponential
instability and if bj < 0 for all 3j, we have a linearly

stable configuration. In this case 0 is also an eigenvalue

with multiplicity two.

=33=




Invariant expressions similar to (2.21) and (2.22) can
be obtained for the configuration being discussed now.
The behavior of aj, bj' cj as Yy » 0 1is similar to that
of case a and we can conclude also that given N there is
a y(N) such that for y < y(N) we have linear stability.
For small colatitude, the eigenvalues do not depend
on the coriolis parameter; this can be seen by using the
argument given in case a.
Even though the above properties are similar to

cases a and b, the addition of a boundary condition at

the equator causes some fundamental differences.

First of all, @ as given by (1.12) with Hog = 0
is not an eigenvalue of L. We have that
2 1 PP e (1 )
W sEges—S————— 0 GO Y ( IR (o -COS W, .
4a” sin v g=g' ¥ R ki
i#k
T it 1+ 2p’ 2
+ izl P, (P ) (l#cos w ) + 2P (cos 2y)
1¥k

as Yy » n/2, the terms under the summation sign tend to 0

because of the factor cos y. But,

lim cos y P;(cos 2y) = -
Y+n/2
so that
lim Q= « 3f u > 0
y-m/2
and
lim Q= = if py < 0 .

Y>1/2
=3i4'=




On the other hand

lim Q@ = + ® for u 2 0
Y0

Seconaly, as we will see later, the zones of stability in
the plane (cp,O) are reduced by the existence of a
boundary condition.

Results from the numerical calculations are summarized

in the Appendix.




AT——————

e e e e e - P - p—

Case d. N Vortices on a Circle of Colatitude, One Polar

Vortex, Boundary Condition at the Equator.

Equations (2.9) - (2.12) are the linearized equations
of motion for the case to be discussed, i.e. (N+1l) vortices
satisfying the boundary condition v = 0 at 6 = 7n/2.

The equations can be expressed:

O e
1

3 3 § )
. L
a = . A3 83 a = Lp a
: 3
B8 C3 A3 ) B8

The matrix Lp is not circular and the calculation of
the eigenvalues has to be carried out by one iterative
procedure.

As in case b, we have a new parameter 1y, and the
linear stability properties depend on the value of uo/u.
Some of the general properties are the following.

(a) the angular velocity O is not an eigenvalue of L;.
(b) Lé has a double zero eigenvalue.

(¢) 1lim @ =« if u > 0 and 1 Q= = s < 0k
Y+n/2 Y+n/2

The invariants are also independent of the position
of the polar vortex and mixed coordinates were used to
describe the linearized motion of the polar vortex and
the vortices on the circle of colatitude. From equation

(1.12), we see that if
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N

U *
V - { . -
cos y L Pv(uki)(l cos ”ki)+.z Pv(pki)(l cos wki)]

i i=] i=1
N A 17k
u ' ;
- +
Pv( cos Y) Pv(cos Y)
*
= C ’
then O = 0 and the vortices remain stationary.

For uy/u > ' and  yg/u < ¢’ the rotation is West

to East and East to West respectively. Since @

is not an eigenvalue of L; » we do not have a quadruple
zero eigenvalue for uo/u = c* as in case b.

As in the previous case with polar vortex, some results
are given for N = 3, 1In the Appendix, results for other

values of N are given.

N ® 3. uo/u < 0. For negative values of uo/u we have
a cap of stability. Given below are values of the limit,

OC » of this cap. (See the table.)
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Table

Values of Gc.

Configuration is stable for 0 < 8 < 6

o
' . | Ho/ M
o/"|-0.2| -.5/-1.0-1.5[-2.6{-2.5|_2* |-3.0|-4.0
|
.2 | 43°| 42°] 39° 35°| 30°| 23°| 39°| 45°| 63°
.3 | a3°| 42°| 39°| 35°| 30°| 23°| 39°| 41°| 59°
.4 | 43°]| 42°| 39°| 35°| 31°| 24°| 40°| 37°| 55°
.5 | 43°| 42°] 39° 36°| 31°| 24°| 41°| 35°| s52°
.6 | 44°| 42°| 40°| 36°| 32°| 24°| 42°| 34°| s0°
.7 | 4a°] a3°] 40°| 37°| 32°| 25°| 43°| 34°| 48°
|
.8 | 44°| 43° 40°| 37°| 32°| 25°| 43°| 34°| 47°
| |
.9 | a4°| a3°| 41° 37°| 33°| 26°| 44°| 35°| 46°
!
.0 | 44°| 43°| 41° 38°| 34°| 26°| 44°| 36°| 46°
1
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(b) uo/p > @, Foxr O < yo/“ < 0.85, we have a cap of
stability whose limit is .- In the table below we have

.29 «8; .79, .83;

some values of ”c for po/;

Table

Values of ©
c

Configuration is stable for 0 < 6 < UC.
.
Nng/ul 0.25 .5 .75 . 85
cp \\\
. 46° 47° 48° 49°
.3 46° 47° 48° 48°
.4 46° 47° 48° 48°
.5 46° 47° 48° 48°
.6 46° 47° 48° 48°
= 46° 47° 47° 48°
.8 46° 47° 47° 47°
.9 46° 47° 47° 47°
1.0 46° 47° 47° 47° ?
|

For larger values of uo/u, . 85 3 ho/u é 1.5, this cap
of stability is broken into a smaller cap and a belt of
stability.

In the table below we have the limits of the smaller
cap and the belt of stability for values of uo/u = 1.0

and 1.5.
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Table.

| Configuration is stable for0 < 6 < b, and 8, < 6 < 6,
uo/u = 1.0 uo/u = 1.5
: cap limit limits of belt cap limit limits of belt
| H 1 &
| Cp e % %2 0c 01 "2
| .2 49° - - g° 43° 520
3 49° - - 8° 45° 51°
', .4 49° - - 8° 47° 50°
| 49° - - 8° - -
6 48° - - 8° = e
o 13° 18° 48° 8° - -
.8 12* 23" 48° g® - -
-9 11 R7® 47° 8° & -
F 1.0 l & B 20" 47° g° -
| ] |
The belt disappears for increasing values of uo/u and for
po/b = 2.0, 2.5, we have again a cap of stability.
Configuration is stable for 0 < 6 < 6 Values of 6 :
cp uo/u = 2.0 uo/u = 2.5
-2 8° 7
.3 8° e
.4 ne "
.5 Vad Lad
.6 ™ s
0 ™ e
.8 7e 7°
3 ye v
1.0 e v




\

Increasing bo/u » the new cap, is broken into
another cap and a belt of stability. Given below are

some values of the limit 6 of the cap and 6,,6., of the

WG
belt for different values of uo/u.

Configuration is stable for 0 < 6 < B v (W5 5 8 59

1 2°
uo/L 3.0 4.0 6.0
cap belt cap | belt cap | belt
c, 0. | 0 | o, 6 | 0y | 8, 0. | Y5 | 9
o2 i 60°} 63° 6° ‘ 63°| 67 6° 67°| 2
.3 b o 63°| 63° 6° ! 63°i 67° 6° 67%¢ 78*
.4 ™ 64°}| 64° 6° ; 62°| 68° 6° 66° 73°
5 1//54 = = 6° 65°| 68° 6° 66°| 73°
.6 7S = = 6° 66°}! 68° 6° 65°%| 72°
o 7 = = 6° 67°| 68° 6° 65°%| 72°
.8 e - - 6° 66°| 67° 6° 67°| 72°
.9 e - - 6° 67°| 68° 6° 68°| 72°
1.0 e - = 6° 68°] 68° 6° 68°| 71°

If we compare these tables with those of case b,

i

is clear that the boundary condition reduces the zones of

exponential stability in the plane (G,uo/u).

The curves of linear stability for N = 3 and other

values of N are given in Figures A-69a,b,c of the Appendix.
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3. Numerical Solution of the Nonlinear Equations of Motion

3.1 Introduction

The linear analysis of Section 2, established certain
zones of exponential stability and instability in the
(e,uo/u) plane and (6,cp) plane for configurations with
and without polar vortex respectively. But, for the entire
range of parameters, zero is an eigenvalue of multiplicity
two and in some cases of multiplicity four.

It is therefore desirable to study the type of
solution associated with the multiple zero root, and its
effect on thelinear stability properties, before describing
the results of the numerical integration of the nonlinear
equations of vortex motion.

First let us analyze configurations without a polar
vortex. As in a previous section, we linearize about an

eguilibrium solution:

ek(t) = Yy = constant ,
(3.1) 2
¢k(t) s (k-l) T + Qt ’

k= 1,2,...,No

That is, a perturbation of the solution (3.1) is considered

to have the form

ek(t) =y + Bk(t) ’
(3.2) Ny
¢k(t) = (k-1) = * Qt + uk(t) ’

k = 1,---' N.

where ak and Bk are small at time t = 0 .
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If the solution (3.2) remains close to the equilibrium
solution (3.1) for all t, that is, if a (t) and Bk(t),
k=1,...,N, remain small for all t, we say that the
configuration is stable.

Assume that all the eigenvalues of the linearized
system (2.14), (2.26) have negative or zero real part, i.e.,
t the configuration is exponentially stable. By using the

l invariants defined in Section 2,

(3.3

e

Bk(t) €1 = constant

k=1

(3.4)

e

ak(t) cy*cy, = constant ,

k=1

we see that if c, = 0, then the solutions ak(t), Bk(t),
k=1,...,N, are bounded for all t, that is, the time
increasing components of the form (constant)‘t associated
with the double zero eigenvalue are eliminated by the
condition c, = 0.
1f c # 0, an integration of (3.4) gives
N

] e i) = 8, €, € % g5, ,
Ly %k 1 %2 3

so that if ¢y # 0 , then the multiple zero root yields
time increasing component in the longitudinal direction.
According to the previous remarks about stability, such

a linear growth would have to be termed an algebraic

instability.
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In Section 2, we saw that = ; , where b, is
e il il
given by (2.14). By using (2.7), (2.14), and (1.7), it is
easy to prova that

o
ay °

Hence, the change of the longitudinal components is
proportional to the variation of the angular velocity with
colatitude. This is a rerlection of the fact that when the
vortices are slightly displaced in colatitude initially,

the angular velocity of the equilibrium solution changes.

Note that the change in angular velocity is of the order of

Furthermore, as we will see later in this section and in
the Appendix, whenever <y # 0, the vortices tend to
oscillate about a new equilibrium position, having a slightly
modified angular velocity of rotation.

It seems reasonable after the considerations just
discussed to define stability by saying that the configura-

tion is stable if

Bk(t), k=1,...,N, remains small for all £sx

and if ak(t), k=1,...,N, remains small for all t;

after subtracting a term of the form (constant) *t.

When the configuration has a polar vortex, the

expressions (3.3), (3.4) are independent of the coordinates
of the yolar vortex. In this case, the effect of the zero

roots on the solution is not clearly defined.
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Nevertheless, if only the circle vortices are perturbed
initially, then the nonlinear calculations show that the
preceding qualitative description of the motior. of the non-

polar vortices also applies to their behavior in this case.

On the other hand, 1if only the polar vortex is displaced
initially, then the qualitative behavior of the resulting
motion cannot be so easily described.

The numerical solutions of the nonlinear initial value
problem, will give us an overall picture of the motions in
the regions of linear stability and instability and most
important of all, it will give some indication of the
validity of the linear analysis.

The numerical integrations, were carried out for a
period of 4000 hours of physical time.

Several tvpes of initial perturbations were considered
in the numerical calculations:

(a) Displacement of the polar vottex in the 6 direction.
(b) Displacements of one circle vortex in the positive

and in the negative 6 direction

(c) Disrlacements of the circle vortex in the positive

and in the negative ¢ direction.

The disturbance produced by displacing only the polar
vortex is more nearly symmetrical than is a disturbance

produced by an initial displacement ir the ¢ direction of

a circle vortex. In fact the magnitude of the latter
disturbance is of the order of 50% larger than the magnitude |

of the former disturbance, for equal initial angular displacement.
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In general, it is possible to classify the motions

obtained by numerical integration, as follows:

1.

Stable linear motions. This type of motion is

typical of configurations with parameter values in the
linear stable zone. They are characterized by the

fact that each component (Bk,¢k) of the motion is
bounded, at all times, by the initial perturbation

i.e., the amplitudes of the oscillations are
proportional to the amplitude of the initial perturba-
tion (a linear scaling).

Nonlinear periodic motions, followed by an unstable
departure away from the initial equilibrium configura-
tion. These types of motions occur mostly for parameter
values in the exponentially unstable zone. The nonlinear
periodic motion persists for a finite interval of time
that depends mainly on uo/u and cp.

The amplitudes of the subsequent oscillations are very

large, as compared with the initial perturbation, and they

are not related in a linear way to the size of the initial

disturbance.

Configurations consisting of 3 circle vortices and one

polar vortex, with and without boundary conditions are

treated in this section. Configurations without a polar

vortex are studied in the Appendix.
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